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Why is surface tension a force parallel to the interface?

Antonin Marchand1, Joost H. Weijs2, Jacco H. Snoeijer2, and Bruno Andreotti1
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A paperclip can float on water. Drops of mercury refuse to spread on a surface. These capillary
phenomena are macroscopic manifestations of molecular interactions, and can be explained in terms
of surface tension. For students, the concept of surface tension is quite challenging since the mi-
croscopic intuition is often in conflict with the common macroscopic interpretations. In this paper
we address a number of conceptual questions that are often encountered when teaching capillarity.
By answering these questions we provide a perspective that reconciles the macroscopic viewpoints,
from thermodynamics or fluid mechanics, and the microscopic perspective from statistical physics.

I. BASIC CONCEPTS AND PROBLEMS

Capillarity is one of the most interesting subjects to
teach in condensed matter physics, as its detailed un-
derstanding involves three otherwise separated domains:
macroscopic thermodynamics1–3, fluid mechanics and
statistical physics4. The microscopic origin of surface
tension lies in the intermolecular interactions and ther-
mal effects5,6, while macroscopically it can be seen as a
force acting along the interface or an energy per unit sur-
face. In the present article we discuss the link between
these three aspects of capillarity, on the basis of simple
academic examples. We first discuss the standard prob-
lems faced by students – and many researchers – in the
understanding of surface tension. We will see that the
difficulty of understanding surface tension forces is of-
ten caused by the improper or incomplete definition of
a system on which the forces act. We bring up four ba-
sic questions, such as the one raised in the title, which
are answered in the rest of the article. Contrary to many
textbooks on the subject, this provides a picture that rec-
onciles the microscopic, thermodynamic and mechanical
aspects of capillarity.

A. The interface

1. Thermodynamic point of view

Following the pioneering work of Gibbs7, we introduce
surface tension as the excess free energy due to the pres-
ence of an interface between bulk phases. Let us consider
a molecule in the vicinity of an interface, for example
near a liquid-vapor interface. The environment of this
molecule is manifestly different from the molecules in the
bulk. This is usually represented schematically by draw-
ing the attractive bonds around molecules, as shown in
Fig. 1. One clearly sees from this picture that approx-
imately half of the bonds are missing for a molecule at
the interface, leading to an increase of the free energy.
One thus defines the surface tension from the free energy

FIG. 1: Sketch showing the ‘missing’ intermolecular bonds
close to the liquid-vapor interface. This gives rise to an in-
crease in free energy per unit area, i.e. the surface tension.

F per unit area:

γLV =

(

∂F

∂A

)

T,V,n

, (1)

for a system of volume V containing n molecules at tem-
perature T . Hence, γLV is the energy needed to in-
crease the interfacial area by one unit. Its dimension
is [γLV] = M.T−2 (mass per time squared) and it is usu-
ally expressed in N/m (force per unit length) or J/m2

(energy per unit area).
It is instructive to estimate the magnitude of surface

tension, which must be of the order of the bond energy
ǫ divided by the cross section area σ2 of a molecule – σ
is a fraction of nanometer. For oils, interaction through
van der Waals interactions leads to ǫ ∼ kBT ≃

1
40

eV
and thus γLV ∼ 0.02 N/m. For water, hydrogen bonds
lead to a higher value γLV ∼ 0.072 N/m. For mercury,
the high energy bonds (ǫ ∼ 1 eV ) lead to a high surface
tension γLV ∼ 0.5 N/m.

2. Mechanical point of view

In fluid mechanics, the surface tension is not defined
in terms of a surface energy but rather as a force per
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FIG. 2: Sketch showing surface tension as a force per unit
length exerted by one subsystem on the other. The system on
which the forces act is the dotted region. The force is parallel
to the interface and perpendicular to the dividing line.

unit length. In the bulk of a fluid at rest, two sub-parts
of a fluid exert a repulsive interaction on one another,
which is called the pressure. If the surface separating
these two subsystems crosses the liquid-vapor interface,
an additional force needs to be taken into account: sur-
face tension. As shown in Fig. 2, the surface tension is
a force tangent to the surface and normal to the contour
separating the two subsystems. The total force is pro-
portional to the width of the contour, which we will call
W throughout the paper. Contrarily to pressure, surface
tension is an attractive force.
The link between mechanics and thermodynamics is

provided by the virtual work principle. If one moves a
contour of width W by a length dl, the area of the in-
terface of the subsystem considered increases by Wdl.
Consequently, the free energy is increased by γLVWdl.
The free energy should equal the work done by the sur-
face tension force, which means that this force must be
parallel to the interface, normal to the contour and have
a magnitude γLVW . Per unit length, the tension force is
thus γLV.
On the other hand, the link between mechanics and

statistical physics is much less obvious for students. One
clearly sees in Fig. 1 that the molecule at the interface
is submitted to a net force (which would be represented
by the sum of the vectors) along the direction perpen-
dicular to the interface. However, we just argued from
the mechanical point of view, that the force is parallel to
the interface. This leads to the first key question of this
article:
• Q1: Why is surface tension a force parallel to the in-
terface while it is so obvious that it must be perpendicular
to it?

B. The contact line

1. Thermodynamic point of view

A standard experimental method for determining the
liquid-vapor surface tension is to measure the force re-
quired to pull a metallic plate (usually made of platinum)
out of a liquid bath. This force is related to the liquid-
vapor surface tension γLV, as is usually explained by the

FIG. 3: (a) Experimental method to determine the liquid-
vapor surface tension. The force per unit length needed to pull
a plate from a bath of liquid is equal to γLV cos θ, where θ is
the equilibrium contact angle. (b) A classical way to interpret
Young’s law as a force balance of surface tensions. Question
2: Why is there no force balance in the normal direction?
Question 3: Why do we draw a single surface tension force in
the left panel (γLV) while there are three in the right panel
(γLV, γSV, γSL)?

diagram of Fig. 3a. Imagine that the plate is moved verti-
cally by a distance dl. The area of the liquid-vapor inter-
face does not change by this motion, so the correspond-
ing interfacial energy is unaffected. However, the motion
does lead to a decrease of the immersed solid-liquid in-
terface area, by W dl, while the solid-vapor interface in-
creases by the same amount. In other words, part of the
wetted surface is exchanged for dry surface. This leads
to a variation of the free energy dF = (γSV − γSL)W dl,
where γSV and γSL are the solid-vapor and solid-liquid
surface tensions respectively. This energy is provided by
the work done by the experimentalist, due to the force
required to displace the plate by dl. Hence, this force
must be equal to (γSV − γSL)W .
To relate this force to the value of the liquid-vapor

surface tension γLV, one has to invoke Young’s law for
the contact angle θ. When the three interfaces (between
solid, liquid and vapor) join at the contact line, the liquid
makes contact with the substrate at an angle θ given by8:

γLV cos θ = γSV − γSL. (2)

With this, the force exerted on the plate can be expressed
as W γLV cos θ, and can thus be used to design a ten-
siometer.

2. Mechanical point of view

From the mechanical point of view, we can interpret
this force as the surface tension acting parallel to the
liquid-vapor interface. By symmetry, the total force ex-
erted on the solid is vertical (the horizontal components
add up to zero). Projecting the surface tension force on
the vertical direction and multiplying by the length W
of the contact line, one indeed gets W γLV cos θ.
By a similar argument one usually interprets Young’s

law for the contact angle as the balance of forces at
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the contact line (Fig. 3b). By projection along the
direction parallel to the solid substrate, one obtains
γSL+γLV cos θ = γSV, which is the same as equation (2).
This force interpretation is a common source of confusion
for students:
• Q2: From Fig. 2b, there seems to be an unbalanced
force component in the vertical direction γLV sin θ. What
force is missing to achieve equilibrium?
• Q3: Why does one draw a single force acting on the
contact line in the case of the plate (Fig. 3a), while for
Young’s law we need to balance all three forces (Fig. 3b)?

Actually, when measuring a surface tension using the
plate technique, one often uses a platinum plate to be
sure that the liquid completely wets the solid. In that
case, however, γSV − γSL > γLV and Young’s law does
not apply! Then, the thermodynamic and mechanical
approaches give conflicting answers:
• Q4: In the situation of complete wetting, is the force
on the plate given by γLV or by γSV − γSL?

C. Answers

Before addressing these points in detail, we start with
a short overview of the answers to the questions raised
above. We emphasize that the thermodynamic result (i.e.
from the virtual work principle) always gives the correct
total force. If one wants to know the local force distribu-
tion, which cannot be extracted from thermodynamics,
it is imperative that the system on which the forces act is
properly defined. Confusion regarding the forces is often
caused by an improper or incomplete definition of such a
system.
• A1: The schematic of Fig. 1 represents only the attrac-
tive intermolecular forces. The real force balance requires
both repulsive and attractive interactions between liquid
molecules.

To answer the questions related to the contact line it
is crucial to specify the system of molecules on which the
forces are acting:
• A2: In Young’s law, the system on which the forces act
is a corner of liquid bounded by the contact line. γLV is
indeed the force exerted on this system inside the liquid-
vapor interface, but the forces exerted by the solid on the
corner are incomplete in Fig. 3b. An extra vertical force
on the liquid, caused by the attraction of the solid, exactly
balances the upward force γ sin θ.
• A3: To obtain the force on the plate, the system to
consider is the solid plate. In this case, the force exerted
by the liquid on the solid is in fact equal to γLV cos θ per
unit length.
• A4: The correct vertical force on the plate is
W γLV cos θ. In the case of complete wetting (θ = 0),
the virtual work principle can be applied, but only when
taking into account the prewetting film.

FIG. 4: Lennard-Jones intermolecular potential φ. The inter-
action is strongly repulsive for intermolecular distances r < σ,
where σ reflects the ‘hard-core’ of the molecules. At large dis-
tances the molecules are attracted to one another. The gray
arrow points to the presence of thermal fluctuations, which,
in a liquid, lead to substantial variations of the intermolecular
distance.

II. MICROSCOPIC INTERPRETATION OF

CAPILLARITY

A. The liquid state

To address the origin of capillarity, we first have to
understand how a liquid phase and a vapor phase can
coexist. This goes back to the work of van der Waals who
derived an equation of state for fluids that can account
for a liquid-gas phase transition5,9:

P =
kT

v − b
−

a

v2
. (3)

Here P is the pressure, v the volume per molecule, and T
the temperature. This equation of state corrects the ideal
gas law to incorporate the effect of intermolecular forces.
The constant b introduces repulsion between molecules
as an excluded volume effect: the pressure diverges when
the total volume per molecule reaches a minimal size b.
In this limit the molecules are densely packed and con-
stitute a liquid phase. In this phase, the volume per
molecule no longer depends on pressure, which means
that the liquid phase is incompressible. Ultimately, this
effect comes from the repulsion of the electron clouds of
the molecules, due to Pauli exclusion principle in quan-
tum mechanics. The constant a represents the long-range
attraction between molecules which finds its origin in the
dipole-dipole interaction (van der Waals attraction).
Van der Waals’s equation of state (3) explains how a

low density gas phase can coexist with a high density
liquid phase. This coexistence requires the pressures to
be identical on both sides of the interface, despite the
striking difference in density. In a gas, where v = vg is
large, most of the energy is of kinetic origin (a/v2g ≪ P ):
the pressure is P ≃ kT/vg. In the liquid phase the
volume per unit molecule is almost in the incompress-
ible limit: v = vl ≈ b. This strong repulsive effect
(kT/(vl − b) ≫ P ), however, is counterbalanced by the
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presence of attractions (a/v2l ≫ P ) so that, for the same
temperature, the pressure in the liquid phase can be in
equilibrium with the pressure in the gas phase. This gives
rise to a stable liquid-vapor interface.
How can a liquid at the same time be repulsive and at-

tractive? A single pair of atoms can of course only attract
or repel each other, depending on the distance separating
their two nuclei. This interaction is shown schematically
in Fig. 4. The steep potential reflects the short-range re-
pulsion, while the negative tail of the potential represents
the long-range attraction. This means that the balance
of attractive and repulsive interactions in (3) only has a
statistical meaning: some particles are in an attractive
state while others are in a repulsive state. This property
of ‘simultaneous’ repulsion and attraction is what makes
a liquid very different from a solid: in an elastic solid,
molecules in the same region are either all compressed (if
the solid is submitted to an external compression), or all
attracted to each other (if the solid is submitted to an
external tension). This point is briefly discussed in the
Appendix.
The difference between a solid and a liquid can be

traced back to the importance of thermal fluctuations,
i.e. the kinetic energy of the molecules. In the solid
phase, these fluctuations are relatively small with respect
to the potential energy, i.e. kBT ≪ ǫ, where ǫ is the
energy scale for the intermolecular forces. As a conse-
quence the system only explores a small region of the
potential. Hence the solid is either in the compressed or
in the tensile state. On the other hand, the liquid phase
is characterized by large fluctuations, for which kBT ∼ ǫ.
A broad range of the potential is therefore sampled by
molecules in the same region of space (Fig. 4). Finally,
the case kBT ≫ ǫ corresponds to a gas phase of weakly
interacting particles that is dominated by kinetic energy.

B. The liquid-vapor interface: Question 1

1. The force of surface tension

Let us now consider the liquid-vapor interface in more
detail. Figure 5a shows a snapshot of the interface ob-
tained in Molecular Dynamics simulations of molecules
that interact through a Lennard-Jones potential10–12.
The corresponding time-averaged density profile is plot-
ted in Fig. 5b. The transition from the high density liquid
to the low density gas takes place in a very narrow region
that is a few molecules wide. In order to determine the
capillary forces we need to divide the system along the
direction normal to the interface into two subsystems (see
Fig. 5a). One considers the force per unit area, called the
stress, exerted by the left subsystem on the right subsys-
tem as a function of the vertical position z. This stress
can be decomposed into two contributions: the pressure
P , which we recall to be the same in the vapor and the
liquid bulk, plus an extra stress Π(z) acting along the
direction parallel to the interface, plotted in Fig. 5c. The
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FIG. 5: The liquid-vapor interface. The vertical axis is in
units of the molecular scale σ. (a) Snapshot of Lennard-Jones
simulation of a liquid-vapor interface. (b) Time-averaged nor-
malized density profile ρ∗(z) across the interface. (c) Tangen-
tial force per unit area exerted by the left part on the right
part of the system. Technically speaking, the plot shows the
difference Π = pNN −pTT between the normal and tangential
components of the stress tensor.

profile of this stress anisotropy shows that there is a force
localized at the interface, acting in the direction parallel
to the interface. This force spreads over a few molecular
scales, which is also the typical thickness of the density
jump across the interface. The integrated contribution
of this force is indeed equal to γLV per unit length, the
surface tension. This shows that surface tension really is
a mechanical force.

Having seen that in our simulations there is a parallel
force localized at the interface, let us turn to Question
1. Why is the tension force parallel and not normal to
the interface? First, we note that Fig. 1 only depicts
the attraction between molecules. A more complete pic-
ture also incorporates the repulsive forces in the internal
pressure, as sketched as dashed arrows in Fig. 6. Away
from the surface there is perfect force balance due to the
symmetry around the molecule. Near the interface, how-
ever, the up-down symmetry is broken. To restore the
force balance in the vertical direction, the upward repul-
sive arrow (dashed) has to balance with the downward
attractive arrow (solid). In the direction parallel to the
interface the symmetry is still intact, thus automatically
ensuring a force balance parallel to the interface. This
means that along the direction parallel to the interface,
there is no reason why the attractive forces should have
the same magnitude as the repulsive forces. As described
above, we find that in practice, the attractive forces are
stronger, which indeed give rise to a positive surface ten-
sion force.

2. Separate roles of attraction and repulsion

However, we still need to explain why these intermolec-
ular forces give rise to such a strong tension along the sur-
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FIG. 6: Sketch showing repulsive (dashed black arrows) and
attractive (gray arrows) forces in the bulk and at the surface.

face. This question was previously addressed by Berry6,
who noted the separate roles of attraction and repulsion.
The key observation is that, to a good approximation, the
repulsive contribution to the pressure is isotropic while
attraction is strongly anisotropic. This is because the re-
pulsion is very short ranged due to the hard core of the
molecules, and can therefore be thought of as a “contact
force”. As such, repulsion is not very sensitive to the
changes in molecular structure near the interface and is
equally strong in all directions12. By contrast, the long-
range nature of the attractive forces make them very sus-
ceptible for the molecular structure. This is the origin of
the observed pressure anisotropy near the interface that
generates the surface tension force.

To see how this works out in detail it is useful to di-
vide the liquid into two subsystems using control sur-
faces parallel to the liquid-vapor interface, as shown in
Fig. 7a. The force exerted on the dotted subsystem by
the rest of the liquid results from the superposition of
attractive (vertical gray arrows) and repulsive (dashed
black arrows) interactions (Fig. 7a). As the subsystem
is at equilibrium, these attractive and repulsive compo-
nents must balance each other. The magnitude of the
attractive force increases with the size of attracting re-
gion – this is because the density increases as one moves
from the vapor towards the liquid phase. The magni-
tude of the attraction saturates to the bulk value when
the control surface is a few molecular sizes from the in-
terface. We then divide the liquid into two subsystems
using a control surface perpendicular to the liquid vapor
interface (Fig. 7b). One can now use that the repulsive
short-range forces are isotropic. This means that the
magnitude of repulsion (dashed black arrows) exerted by
the left side on the subsystem (dotted region) increases
with depth in a way analogous to that in Fig. 7a. By
contrast, the strength of attraction has a much weaker
dependence on depth – for the sake of simplicity we draw
it at a constant magnitude that equals the attraction in
the bulk. As a result, there indeed is a net attraction of
the subsystem by the rest of the liquid (dark gray arrow
in Fig. 7c).

FIG. 7: Forces exerted on a subsystem of liquid (dotted re-
gion) by the rest of the liquid (gray region without dots) (a)
The subsystem considered is the lower part of the liquid and
is separated from the interfacial zone by a line parallel to the
liquid-vapor interface. The subsystem (dotted region) is sub-
mitted to an attractive force (gray arrows) and a repulsive
force (dashed black arrows) exerted by the rest of the liquid
(gray region without dots). They must balance each other.
(b) The liquid is now divided along a line perpendicular to
the interface. The subsystem considered (dotted region on
the right) is submitted to an attractive force (gray arrows)
and to a repulsive force (dashed arrows) exerted by the rest
of the liquid (gray region without dots).As the repulsive force
is isotropic, it has the same magnitude as in (a) and therefore
decays close to the surface. On the contrary, the attractive
force is nearly constant and remains almost unchanged close
to the surface. (c) This leads to a net attractive force from
one side on the other.

C. The liquid-solid interface

1. Forces near the liquid-solid interface

We now consider the liquid-solid interface (see Fig. 8).
Here, two effects superimpose. First, due to the pres-
ence of the solid, there is a lack of liquid in the lower
half-space (hatched region in Fig. 8). This missing liquid
induces an anisotropy of the attractive liquid-liquid force
in the same way as it does in the case of the liquid-vapor
interface. Therefore, as in Fig. 7c, the left hand side
of the liquid exerts a net attractive force γLV per unit
length on the right hand side subsystem. The second ef-
fect is due to the liquid-solid interaction. In the same
way as with the liquid-vapor interface, we divide the liq-
uid into two subsystems using a control surface parallel
to the interface, as shown in Fig. 8a. The attraction by
the solid (gray arrow) decreases with the distance and is
perfectly balanced by a short range liquid-liquid repulsive
force (dashed arrows). Now, we divide the liquid into two
subsystems using a control surface perpendicular to the
liquid solid interface (Fig. 8b). Assuming once more that
the liquid-liquid repulsion is isotropic, the left part of the
liquid exerts a net repulsive force on the right subsystem
(dotted region). This force is induced by the influence
of the solid and, perhaps surprisingly, it is not equal to
γSL. Instead, it has been shown11 that this force is equal
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FIG. 8: Forces exerted by the solid (dashed line) on a sub-
system of liquid (dotted region). On these schematics, the
attractive liquid-liquid interactions already treated in Fig. 7,
are not considered. (a) The liquid subsystem is semi-infinite.
It is delimited by a line parallel to the liquid-solid interface, at
different distances above it. The subsystem (dotted region) is
submitted to an attractive force (gray arrows) exerted by the
solid and to a repulsive force (dashed arrows) exerted by the
rest of the liquid (gray region without dots). As the subsys-
tem is in equilibrium, they must balance each other. (b) The
liquid is now divided along a line perpendicular to the inter-
face. Only the horizontal force components are shown. The
solid exerts no horizontal attraction. As the repulsive inter-
actions are isotropic, this results into an horizontal repulsive
force exerted by one side on the other.

to γSV + γLV − γSL, and this will be motivated in more
detail below.
To combine these two effects, we subtract the unbal-

anced attractive force due to the absent liquid (γLV) from
the repulsive force due to the solid (γSV + γLV − γSL)
to find the net repulsive force between the subsystems:
γSV − γSL.

2. Solid-liquid interaction and the surface tensions

Let us motivate why the strength of the solid-liquid
interaction does not couple directly to the solid-liquid
surface tension γSL, but to the combination γSV + γLV −

γSL
1,13. Note that this feature will also be crucial for

understanding the wetting phenomena discussed in the
following section.
The solid-liquid surface tension represents the free en-

ergy needed to create a solid-liquid interface. To make
such an interface, one first has to “break” a bulk solid and
a bulk liquid into two separate parts, and then join these
solid and liquid parts together. This breaking of liquid is
depicted schematically in Fig. 9a (it works similarly for
the solid). The corresponding energy is the “work of ad-
hesion” ALL due to liquid-liquid attractions (ASS for the
solid). This gives rise to a surface tension 2γLV = ALL

(2γSV = ASS), since the liquid (solid) is connected to
a vacuum at this intermediate stage. When joining the
solid-vacuum and liquid-vacuum interfaces, the attrac-

FIG. 9: Relation between adhesion work and surface tensions.
(a) To split a liquid volume into two semi-infinite volume, one
has to create two liquid-vacuum interfaces. It costs an energy
ALL = 2γLV. (b) To create a solid-liquid interface one first
needs to create a liquid-vacuum and solid-vacuum interface,
which costs an energy γSV + γLV. Joining the liquid-vacuum
and solid-vacuum interfaces yields an energy reduction ASL =
γSV + γLV − γSL due to the solid-liquid attraction.

tive solid-liquid interaction will reduce the surface en-
ergy by the solid-liquid work of adhesion ASL (Fig. 9b).
Hence, the resulting solid-liquid surface tension becomes

γSL = γSV + γLV −ASL. (4)

From this one finds that, indeed, the strength of the solid-
liquid adhesion reads

ASL = γSV + γLV − γSL = γLV(1 + cos θ). (5)

In the last step we used Young’s law for the equilibrium
contact angle. As a consequence, the capillary forces in-
duced by solid-liquid attractions will have a magnitude
ASL = γLV(1 + cos θ) and not γSL.

III. MICROSCOPIC INTERPRETATION OF

WETTING

The question of the force balance is even more intricate
in the vicinity of the contact line, where the liquid-vapor
interface meets a solid. It is crucial to note that the
contact line itself does not represent any material : it is
a mathematical line that marks the separation between
wetted and dry parts of the solid. The question “What
is the force on the contact line?” is thus ill-posed, since
there are no molecules on which such a force would act.
As a matter of fact, only a material system (a collection
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FIG. 10: Solid and liquid forces acting on a liquid subsystem
(dotted regions) near the contact line. (a) Sketch of a wedge
of liquid near the contact line with the three forces exerted
on the system. (b) Each of the three corners of this system
must be treated differently. The upper right corner is at the
liquid vapor interface. Following Fig. 7, the rest of the liquid
exert a net attractive force parallel to the interface equal to
γLV per unit length. The lower right corner is at the liquid
solid interface. Following Figs. 7 and 8, the rest of the liquid
exerts a repulsive force γSV − γSL. The liquid near the solid-
liquid interface is attracted by the solid, this force is balanced
everywhere by repulsion at the solid-liquid interface, except
in the vicinity of the contact line.

of matter) can be submitted to a force. Therefore, care
should be taken to properly define the systems that play
a role near the contact line: the liquid near the contact
line and the solid underneath it. In the following sections
we will show how a careful consideration of all the forces
on the appropriate material systems will lead to proper
force balances, consistent with the thermodynamic pre-
dictions.
All results and sketches provided in this section, some

of which may appear counterintuitive, are backed up by
a Density Functional Theory model for microscopic in-
teractions14,15 and molecular dynamics simulations.12

A. Force on a liquid corner: Question 2

Let us consider the forces on the wedge-shaped liq-
uid corner in the vicinity of the contact line, as shown
in Fig. 10. Choosing this subsystem, we will now ex-
plain Young’s force construction from Fig. 3b and answer
Question 2: What happens to the force balance normal
to the solid-liquid interface?

There are two types of forces acting on the liquid
molecules inside the subsystem: interactions with the
solid and interactions with other liquid molecules out-
side the subsystem. We first consider the solid-on-liquid

FIG. 11: Forces acting on a system, in this case a liquid drop
(dotted area). The system is in equilibrium so the sum of all
(external) forces must be zero. Due to Laplace pressure, there
is a repulsive force exerted by the solid on the liquid across the
liquid-solid interface (upward black arrows). In the vicinity of
the contact line, repulsion and attraction of the liquid by the
solid do not balance each other. Therefore, the solid attracts
the liquid with a vertical force equal to γLV sin θ per unit
length (downward dark gray arrows).

forces. One can immediately see that, since the solid
spans an infinite half space, every liquid molecule experi-
ences a resultant force that is oriented purely normal to
the solid-liquid interface: the left-right symmetry of the
solid ensures that there is no force component parallel to
the interface. Far from the contact line at the solid-liquid
interface, this attractive force is balanced by a repulsive
force, as discussed in Fig. 8. However, since the repul-
sive force is continuous and zero outside the droplet, the
repulsive force must decay close to the contact line. This
means that there is an unbalanced attractive force that
is strongly localized in the vicinity of the contact line. It
has been shown16 that this force per unit length is equal
to γLV sin θ. The existence of this force has recently been
challenged17,18. To show that this force indeed must ex-
ist to achieve equilibrium, we consider the droplet shown
in Fig. 11. Choosing the drop as the system, and recog-
nizing that the force in the interior of the droplet at the
liquid-solid interface (small arrows) is due to the Laplace
pressure 2γLVκ (with κ the curvature 1/R), the attrac-
tive force at the contact line must be exactly γLV sin θ to
achieve a force balance19–23. This provides the answer
to Question 2: the downward solid-on-liquid force is not
drawn in Fig. 3b. This missing force has often been in-
terpreted as a reaction from the solid2, whose existence is
demonstrated experimentally by the elastic deformation
of soft solids below the contact line22–25. Here, we clarify
the molecular origin of this normal force16.

To finalize the force construction near the contact line
we return to the wedge shown in Fig. 10b. Since the
solid can only exert a normal force on the liquid, all
parallel force components drawn in Young’s construc-
tion are purely due to the liquid molecules outside the
corner. The force drawn along the liquid-vapor inter-
face can be understood directly from the tension γLV
inside the liquid-vapor interface (cf. the discussion of
Fig. 7). A similar force arises at the solid-liquid inter-
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face (Fig. 8), which, however, is repulsive and has a mag-
nitude γSV − γSL, as explained in the previous section.
Including these forces gives a perfect force balance on
the liquid corner, as seen in Fig. 10a. In fact, one can
easily verify that even the resultant torque (or force mo-
ment) is zero for this force construction. As such, it pro-
vides a more physical alternative to the classical picture
of Young’s law.

B. Liquid-on-Solid force: Question 3

The measurement of surface tension in Fig. 3a directly
relies on the force exerted by the liquid on the solid plate.
Again, we emphasize the importance of a proper defini-
tion of “the system” on which the forces act, and in this
case this is the solid on which the liquid rests. The situ-
ation is thus very different from the forces on the liquid
corner, which are in equilibrium and experiences a zero
resultant force. This difference between systems provides
the key to Question 3. In Fig. 3a, the total force exerted
by the liquid on the solid is represented by the resultant
~γLV, while Fig. 3b represents the balance of the forces
acting on the liquid wedge.

1. Forces near the contact line

Once again, we turn to the microscopic description of
the forces in the vicinity of the contact line. It turns out
that the normal component of the force exerted on the
solid is equal to γLV sin θ, consistent with the macroscopic
picture of a tension along the liquid-vapor interface.
However, the parallel component of the liquid-on-solid
force does not have the expected magnitude γLV cos θ,
but γLV + γSV − γSL = γLV (1 + cos θ). This can be
understood as follows. Fig. 12a illustrates that the tan-
gential force component originates from the long-range
attraction between solid and liquid molecules. In the
previous section we already demonstrated the strength
of this solid-liquid adhesion to be ASL = γLV (1 + cos θ).
Hence, there is no reason why the total force on the
solid should be γLV cos θ. Indeed, the DFT calculation
confirms a tangential liquid-on-solid force of magnitude
ASL = γLV (1 + cos θ)16.
The physics of this surprising result is nicely illustrated

by Fig. 12. The macroscopic intuition that the resultant
surface tension force is pulling along the liquid-vapor in-
terface would predict a force to the left whenever the con-
tact angle θ > 90◦. However, it is clear from the sketch of
the attractive forces that the sum of all parallel compo-
nents must be oriented towards the liquid (right side in
the figure). This stems from the asymmetry between the
amount of liquid attracting the solid molecules on both
sides of the contact line: there are always more liquid
molecules on the right side of the contact line in this fig-
ure. This is consistent with a parallel force γLV (1+cos θ),
but not with a force γLV cos θ (which changes sign at

FIG. 12: Forces acting on the solid subsystem (hatched areas)
by the liquid (gray areas) near the contact line. (a) Distribu-
tion of forces acting on the solid near the contact line. Due to
the attraction of the liquid, the solid is attracted towards the
liquid (solid gray arrows). The absence of liquid on the left
part of the contact line ensures the tangential force is always
towards the liquid, even for θ > 90◦. The repulsion (dotted
arrows) arises from the contact force at the solid-liquid in-
terface. Far from the contact line, repulsion and attraction
balance each other. (b) Resultant force acting on the solid
near the contact line. The net normal force is γLV sin θ, and
the parallel force γLV + γSV − γSL = γLV(1 + cos θ).

90◦). Note that when considering the force exerted by
the solid on the liquid, this asymmetry does not occur
since the solid is left-right symmetric, therefore there is
no tangential component. This once more illustrates that
a detailed force interpretation crucially relies on the def-
inition of the system.

2. Global force balance: curvature of solid-liquid interface

To solve this apparent discrepancy with the thermody-
namic result one has to consider all the forces exerted by
the liquid on the solid, i.e. not just the forces near the
contact line. The key point is that the submerged solid
bodies cannot be flat everywhere and must have curved
pieces of liquid-solid interface. If the interface separating
the solid from the liquid is flat, the net normal force is lo-
cally zero as repulsion balances attraction (far away from
the contact line). However, when this interface is curved,
a repulsive force inside the liquid is enhanced due to the
curvature of the solid-liquid interface, in a way similar
to the Laplace pressure. As shown in Fig. 13, the pres-
ence of a curved half-space of liquid acts on the solid,
and creates an unbalanced liquid-on-solid force γLVκ per
unit area. Here κ is the local curvature (inverse radius of
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FIG. 13: Forces acting on a solid at the solid-liquid inter-
face. (a) Without liquid, there is neither repulsion nor at-
traction. (b) When liquid is present there is repulsion and at-
traction. However, the repulsion is not completely balanced
in this curved interface, as there is more liquid than in a
plane geometry. (c) The resulting force per unit surface is
γLVκ where κ is the curvature of the liquid (positive in this
case), equivalently to the Laplace pressure. It only shows a
dependency on the liquid-liquid interactions as it is only the
absence of liquid that is relevant to the curvature.

curvature) of the solid. Interestingly, DFT calculations16

show that the resultant pressure couples only to γLV and
not to γSL. As we show below, this is exactly what is
needed to restore consistency between microscopic and
thermodynamic forces.
An excellent demonstration of this effect is the long de-

bated case of a ‘floating-pin’ under zero-gravity, as shown
in Fig 14. Whereas a floating pin in a system with grav-
ity leaves a visible depression in the liquid-vapor interface
near the contact line (cf. Fig. 14e), the zero-gravity condi-
tion ensures that the interface has a constant curvature,
i.e. it is straight everywhere. This means that the ver-
tical position depends on the equilibrium contact-angle
alone, and not on the density ratio of the involved materi-
als. As discussed in Fig. 12, the liquid-on-solid force near
the contact line is not oriented along the liquid-vapor in-
terface, but points towards the interior of the liquid. This
creates a resultant downward force that has to be com-
pensated to restore equilibrium. Additionally, the cur-
vature of the solid-liquid interface creates a normal force
distributed over the whole immersed surface of the solid
of magnitude γLVκ per unit surface (cf. Fig. 14a). Inte-
grating over the curvature of the submerged surface from
one contact line to the other then gives the resultant of
the Laplace pressure:

γLV

∫ 2

1

κ~ndS = γLV(~t2 + ~t1) , (6)

where ~t1 and ~t2 are the unit vectors tangential to the pin,

FIG. 14: Capillary forces on immersed objects. (a) Schematic
of a pin floating at the surface of a liquid under partial wet-
ting conditions and in zero-gravity. The downward thin gray
arrows are the forces exerted by the liquid on the pin located
in the vicinity of the contact line. The small light gray arrows
show the Laplace pressure γLV κ acting on the solid, due to
the curvature κ of the solid-liquid interface. (b) θ denotes the
contact angle and ~t1 and ~t2 are two unit vectors tangential to
the pin, pointing upwards, at the two contact lines. (c) The
thick gray arrows show the resultants of the capillary forces
detailed in (a), which apply on each half of the pin. They re-
duce to forces tangential to the liquid-vapor interface at the
contact lines. Note that this schematic does not show the dis-
tribution of capillary forces. (d) Distribution of the capillary
forces in the case of an irregular shape. Since the integral over
the curvature is equal to the sum of the two tangential vectors
at the contact lines, the resultant is independent of the shape
of the body. It is thus the same as in (c). (e) Pin floating at
the surface of a liquid under gravity. The upward thick gray
arrows are the resultants of capillary forces. They balance the
effect of gravity (corrected by the Archimedes force), shown
as the downward black arrow.

pointing upwards. Therefore, the resultant is orientated
upwards and is equal to 2γLV sin θ per unit depth (see
Fig. 14b). It balances exactly the downward forces in-
duced close to the contact lines (Fig. 12b), hence the pin
is in equilibrium. Importantly, this result is independent
of the shape of the body (see Fig. 14d).
The same principle applies to the partially wetted plate

of Fig. 3a: the force exerted by the fluid on the plate
results from two contributions, as shown schematically
in Fig. 15c. First, there is the vertical force component
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FIG. 15: (a-b) Force per unit length of the contact line needed
to keep a plate in equilibrium in a bath in partial (a) and
complete wetting (b). (c) Partial wetting. The vertical force
at the contact line, equal to γLV(1 + cos θ), is balanced by
the Laplace pressure induced by the curvature of the plate.
Note that any plate shape would lead to the same resultant
force as the integral of the curvature over the surface reduces
to the local tangents at the contact line (see Fig. 14d). (d)
Complete wetting case. Due to the mesoscopic pre-wetting
film, of which the thickness is exaggerated in the picture,
there is no contact line, thus there is no force located near
the apparent macroscopic contact line. The forces are related
only to the Laplace pressure: the curvature of the solid gives a
zero resultant force, as it is completely immersed in the liquid,
and the curvature of the liquid is acting on the solid only in
the pre-wetting zone — as it is compensated by gravity in the
meniscus. The resultant force per unit length is then equal to
γLV.

(per unit length) due to the vicinity of the contact line:
γ(1 + cos θ) (cf. Fig. 12). Second, there are submerged
surfaces of the plate where a localized curvature exists
at the corners. This curvature induces a Laplace force
on the pin (see Fig. 14d) which results into a net upward
force γLV per unit length of contact line which means the
total force (per unit length of contact line) on the plate is
γLV cos θ, in agreement with the thermodynamic result.

C. Complete wetting: Question 4

In the case of complete wetting, Young’s law for the
contact angle is no longer applicable. Instead, the ap-
parent contact angle θ vanishes because the three surface

tensions do not balance each other:

γSV − γSL > γLV . (7)

Physically, there is no real contact line in this configura-
tion (Fig. 15b), but there is a meniscus where the liquid-
vapor interface approaches the solid. Beyond the menis-
cus, there exists a mesoscopic liquid film called a pre-
wetting film, which covers the solid completely (Fig. 15d).
The existence of an apparent contact line is only due to
the effect of gravity: on a flat surface, the liquid would
simply spread. The interface between the liquid and va-
por phases consequently presents two regions. In the
lower region, the meniscus can be described by the bal-
ance between the Laplace pressure and the gravity po-
tential

γLVκ = ρgz , (8)

where z is the height above the bath (thus, no additional
constant needed) and κ the curvature of the interface. In-

troducing the capillary length ℓγ =
√

γLV/ρg this equa-
tion can be written as: ℓ2γκ = z. In the upper region,
there is the pre-wetting film whose thickness h(z) is de-
termined by the balance between the gravity potential
and the disjoining pressure Π(h). The disjoining pres-
sure is by definition the potential energy per unit volume
at the surface of a liquid layer of thickness h, therefore
the balance reads1,13:

Π(h) = ρgz . (9)

As the pre-wetting film is very flat, the contribution of
Laplace pressure can be neglected (κ = 0) in this regime.
The disjoining pressure scales as:

Π(h) ≃
(γSV − γSL − γLV)σ

2

h3
,

for films where h ≫ σ, where σ is a length on the order
of the molecular size. The disjoining pressure vanishes in
the limit case γSV = γSL+ γLV, which can be interpreted
as the situation for which the interaction is the same with
the liquid and with the solid. Then, one indeed does not
expect any influence of the thickness h on the energy.
Equating gravity and disjoining pressure (eq. 9), we

obtain the thickness profile in the pre-wetting region:

h(z) ≃

[

(γSV − γSL − γLV)σ
2

ρgz

]1/3

In the vicinity of the apparent contact line, where the
two zones must match, the thickness is thus of order

l
1/3
γ σ2/3. As lγ is millimetric and σ nanometric, h is
mesoscopic (h ≃ 100 nm). From the microscopic point of
view, the solid is then completely surrounded by a semi-
infinite layer of liquid (h ≫ σ). Therefore, the only forces
acting on a solid in complete wetting are normal contact
forces, such as Laplace pressures. There are no contact
line forces such as those described in Fig. 12b.
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The forces exerted by the liquid on the solid are then
related, as previously, to the curvature of the liquid-solid
interface but also, inside the pre-wetting film, to the cur-
vature of the liquid-vapor interface (Fig 15d). Integrated
over the whole submerged solid, the curvature of the solid
gives a zero resultant force, whereas the curvature of the
liquid is only integrated where the pre-wetting film ex-
ists. As a result, the resultant force is vertical and has
an amplitude γLV per unit length of the apparent contact
line.
This result is indeed consistent with the thermody-

namic perspective. Since the solid is covered by a liquid
layer much thicker than the molecular size the surface
tension above the apparent contact line is not γSV but
γSL + γLV: the plate is always completely submerged. In
essence, this means that the plate never leaves the liquid
bath when the plate is pulled upwards. When moving,
there is no change of the solid-vapor interfacial area (it
remains zero) or of the solid-liquid interfacial area (which
is simply the total area of the plate). The only change
occurs at the liquid-vapor interfacial area, which is in-
creased, and the required pulling strength is thus γLV
per unit length of the apparent contact line.

IV. CONCLUSION

A. Summary

In this article we have raised simple questions about
capillarity that many students face. By studying the in-
terfaces from a microscopic perspective, we were able to
provide answers to these questions, and also reconcile
thermodynamics and statistical physics.
We have provided a mechanical perspective about why

there exists an attractive force parallel to interfaces: sur-
face tension. The absence of liquid creates an attrac-
tive anisotropic force within a few molecular lengths from
the interface whereas the repulsion remains isotropic and
scales with the local density of the fluid. The attractive
anisotropy leads to a strong localized stress parallel to
the interface called surface tension. This occurs at liquid-
solid interfaces as well, where there is also a half-space of
liquid missing.
The problems when constructing force pictures in cap-

illarity often arise from the improper definition of a sys-
tem on which the forces act. Considering a corner of liq-
uid near the contact line as a system, we have proposed
here an alternative to Young’s construction (Fig. 3b).
The analysis allows to locate and understand the differ-
ent forces, in particular the attractive force exerted by
the solid. This new force constructions leads to a per-
fect mechanical equilibrium: vectorial force balance and
torque balance.
When looking at the force that is exerted by the liquid

on the solid near the contact line we find that, surpris-
ingly, this force is not γLV cos θ, but γLV(1+cos θ). More-
over, a normal stress is exerted in all the regions of any

curved solid-liquid interface: the liquid pulls the solid
when the latter is convex. This force is equivalent to the
usual Laplace pressure. One has to take both these forces
into account, to obtain the net force from the thermody-
namic result. The advantage of this microscopic force
description is that it provides a simple answer to an aca-
demic problem which has become controversial in the last
decade: the floating pin paradox17,18,26.
The drawings and several relations presented in this

article are based on results obtained using the Density
Functional Theory in the sharp-kink approximation16,
which allows to make quantitative predictions of the force
distributions in the liquid and in the solid. .

B. Teaching perspective

We realize that the detailed picture of microscopic
forces is not necessarily the most accessible for teaching
purposes. In particular when introducing the basic con-
cepts of capillarity, it is much simpler to work from the
thermodynamic perspective: energy minimization natu-
rally yields the equilibrium conditions, while the resul-
tant forces can be computed from the virtual work prin-
ciple. Nevertheless, our analysis provides a number of
insights that are useful when teaching capillarity:

• To determine “capillary forces” it is crucial to ex-
plicitly specify the system (= collection of matter)
to which the forces are applied.

• The surface tensions γSL and γSV do not pull on
the solid.

• The global force exerted on the solid by the liq-
uid can be computed by adding the contributions
of (Laplace) pressure inside the liquid and a local-
ized tension force γLV parallel to the liquid-vapor
interface. While this gives the correct answer, it
does not reflect the true microscopic distribution
of liquid-on-solid forces.

• By contrast, the resultant force on the liquid near
the contact line does involve the three surface ten-
sions γLV, γSL and γSV.

• The classical construction of Fig. 3b to explain
Young’s law does not accurately represent the force
balance. A complete picture is provided in Fig. 10a.

We hope in particular that the force construction of
Fig. 10a will find its way to the classroom to explain
Young’s law (2). It is conceptually simple, it clarifies the
“system” to which forces are applied, and represents a
perfect mechanical equilibrium. Namely, besides a bal-
ance of normal and tangential components, the forces
also exert a zero torque.
Finally, we note that the virtual work principle yields

the correct resultant force on a solid, but that it can-
not recover the true microscopic force distribution. The
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knowledge of such a force distribution is crucial when
one wants to take into account how a solid is elastically
deformed by the contact line19–21. Even though these
deformations can be as small as a few nanometers, these
can be measured due to the advent of modern experi-
mental techniques22–25. This experimental access renews
the fundamental interest in the microscopic details of
capillarity16.
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Appendix A: On the difference between liquid vapor

and solid vapor surface tensions

From the mechanical point of view, the surface ten-
sions of liquids and solids are fundamentally different.
To illustrate this difference, let us analyse the example
of Fig. 16, which shows two small adhesive solid spheres
such as grains in a powder of flour. One might imagine
that the particles are attracted all over the contact, but
in reality, there is also repulsion to give a zero resultant
force. Although there is both attraction and repulsion in
this example, the attractive and repulsive parts are spa-

tially separated: attractive near the edge, repulsive in
the central part of the contact. In a liquid, by contrast,
the attraction and repulsion occur at the same location.

FIG. 16: Unlike liquids, solids are locally either in a repulsive
state or an attractive state. This is illustrated here by the
contact between two adhesive solid elastic spheres27–30. (a)
Geometry of the contact in the presence (solid line) or absence
(dashed line) of adhesion. (b) Radial distribution of normal
force in the contact zone
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